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Abstract Let μ0 be a probability measure on R
3 representing an initial velocity distribution

for the spatially homogeneous Boltzmann equation for pseudo Maxwellian molecules. As
long as the initial energy is finite, the solution μt will tend to a Maxwellian limit. We show
here that if

∫
R3 |v|2μ0(dv) = ∞, then instead, all of the mass “explodes to infinity” at a rate

governed by the tail behavior of μ0. Specifically, for L0, define

ηL =
∫

|v|≤L

|v|2dμ0(v).

Let BR denote the centered ball of radius R. Then for every R,

lim
t→∞

∫

BR

dμt(v) = 0.

The explicit rate is estimated in terms of the rate of divergence of ηL. For example, if
ηL ≥ Const.Ls , some s > 0,

∫
BR

dμt(v) is bounded by a multiple of e−[κ3s/(10+9s)]t , where
κ is the absolute value of the spectral gap in the linearized collision operator. Note that in
this case, letting Bt denote the ball of radius ert for any r < κs/(10 + 9s), we still have
limt→∞

∫
Bt

dμt(v) = 0.
This result shows in particular that the necessary and sufficient condition for limt→∞ μt

to exist is that the initial data have finite energy. While the “explosion” of the mass towards
infinity in the case of infinite energy may seem to be intuitively clear, there seems not to
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have been any proof, even without the rate information that our proof provides, apart from
an analogous result, due to the authors, concerning the Kac equation. A class of infinite
energy eternal solutions of the Boltzmann equation have been studied recently by Bobylev
and Cercignani. Our rate information is shown here to provide a limit on the tails of such
eternal solutions.

1 Introduction

We introduce our subject under the usual hypothesis that the initial velocity distribution μ0

is absolutely continuous with respect to f , though this shall be relaxed later on. The Cauchy
problem for the spatially homogeneous Boltzmann equation on R

3 for pseudo-Maxwelian
molecules has the form

∂

∂t
f (v, t) = Qf (v, t) with f (v,0) = f0(v). (1.1)

Here, the collision kernel Q is a bilinear map from L1(R3) × L1(R3) to L1(R3) given by

Q(f, g)(v) =
∫

R3

(∫

S2
(f (v∗)g(w∗) − f (v)g(w))B(cos(θ))dσ

)

dw (1.2)

where

v∗ = v + w

2
+ |v − w|

2
σ, w∗ = v + w

2
− |v − w|

2
σ

is a parameterization of the energy and momentum conserving collisions, through the unit
vector σ , which ranges over S2, the unit sphere in R

3. In (1.2), dσ is the uniform probability
measure on S2, and θ denotes the angle between σ and the relative velocity, v − w.

The positive function B determines the relative likelihood of the various possible col-
lision outcomes as parameterized by σ . See [10] for further background. We suppose that∫

S2 B(cos(θ))dσ < ∞. Under this assumption, it is natural to normalize the time scale so
that

∫
S2 B(cos(θ))dσ = 1.

One may then separate the collision kernel into the gain and loss terms, Q(f, g) =
Q+(f, g) −Q−(f, g), where

Q+(f, g) =
∫

S2

∫

R3
f (v∗)g(w∗)B(cos(θ))dwdσ (1.3)

and

Q−(f, g) = f. (1.4)

The Wild convolution f ◦ g of two probability densities f and g on R
3 is defined by

f ◦ g(v) = Q+(f, g).

This permits (1.1) to be written in the from

∂

∂t
f (v, t) = f ◦ f (v, t) − f (v, t). (1.5)
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As Wild proved [15], the solution of (1.5) with initial data f0 is given by

f (v, t) =
∞∑

n=1

e−t (1 − e−t )n−1Q+
n (f0)(v) (1.6)

where Q+
n (f0) is a recursively defined average over all the n-fold Wild convolutions of f0:

By definition, Q+
1 (f0) = f0, and then for n ≥ 1,

Q+
n (f0) = 1

n − 1

n−1∑

j=1

Q+
n−j (f0) ◦ Q+

j (f0). (1.7)

Just as the ordinary convolution can be extended from L1 to measures, the Wild convo-
lution can also be defined for any two probability measures μ and ν. One approach to this
is explained in [9], and another can be given in terms of the Fourier transform identities
introduced in Sect. 2. In any case, Q+

n (μ0) is well defined for all probability measures μ0

on R
3, and then

μt =
∞∑

n=1

e−t (1 − e−t )n−1Q+
n (μ0) (1.8)

gives the measure valued solution μt of (1.5) with initial data μ0.
Our main result concerns the behavior of these solutions when the initial energy is infi-

nite.

Theorem 1.1 Let μ0 be a probability measure on R
3 such that

∫
R3 |v|2dμ(v) = ∞. Let ηL

be defined by

ηL =
∫

|v|≤L

|v|2dμ(v). (1.9)

Let BR be the centered ball of radius R, and let μt be the solution of the Cauchy problem
for μ0 given by (1.8). Then for every R > 0

lim
t→∞

∫

BR

dμt = 0. (1.10)

The rate of convergence can be explicitly estimated in terms of the rate at which ηL diverges
with increasing L. For example, if ηL ≥ Const·Ls , then

∫

BR

dμt ≤ Const·R3e−[3κs/(10+9s)]t ,

where

κ = 1 −
∫

S2
[cos4(θ/2) + sin4(θ/2)]B(cos(θ))dσ, (1.11)

which happens to be the magnitude of the spectral gap for the linearized collision operator.

The proof of the theorem will yield rate information in the general case in which ηL may
diverge arbitrarily slowly. Then however, as one might expect, the convergence in (1.10) can
be arbitrarily slow as well. The bound on this convergence is simplest when ηL ≥ Const·Ls .
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Note that in this case, limt→∞
∫

Bt
dμt = 0 where Bt is the ball or radius ert , and r is any

number with r < κs/(5 + 9s).
Clearly, whenever (1.10) is true, it is impossible for μt to converge, as t tends to infinity,

to any limiting probability distribution on R
3, even weakly in the topology generated by

Cb(R
3). Since whenever the initial energy is finite, μt does converge to a Maxwellian, even

strongly in L1(R3), we see that:

• A necessary and sufficient condition for limt→∞ μt to exist in the weak (Cb(R
3))∗ topol-

ogy is that μ0 has finite energy.

This statement extends a result [12] of two of the authors from the Kac equation to the
Boltzmann equation. See also [8] for a quantitative study for the Kac equation.

Notice that the estimate on the rate at which the mass explodes to infinity is governed
by the rate that ηL diverges as L tends to infinity. If this divergence is very slow, so that the
energy is “just barely infinite”, then the explosion of the mass to infinity will be correspond-
ingly slow. Indeed, whenever the energy is finite, there is convergence to a Maxwellian, and
so there is no explosion in this case. However, as shown in [9], if the tails on the initial
distribution are long, so that the energy is “just barely finite”, then the convergence can be
arbitrarily slow.

We have taken care to formulate Theorem 1.1 in complete generality for measure valued
initial data. However, when proving theorems about measure valued solutions of (1.1), much
of the work can often be done estimating solutions with quite smooth initial data. This is
because the Wild convolution has an important “commutativity” property:

Let M(ε) be the Maxwellian density

M(ε)(v) =
(

1

2πε

)3/2

e−|v|2/(2ε).

Then one has the frequently useful Bobylev’s identity [1], which says that for all probability
measures μ and ν, with ∗ denoting the standard convolution of probability densities,

(μ ◦ ν) ∗ M(ε) = (μ ∗ M(ε)) ◦ (ν ∗ M(ε)).

It follows that for all n,

Q+
n (μ ∗ M(ε)) = (Q+

n (μ)) ∗ M(ε).

Because of (1.6), this means that convolving the initial data with M(ε) and then solving the
equation, yields the same result as does first solving the equation, and then convolving with
M(ε). In other words, for any t > 0, let f (ε)(v, t) be the solution of (1.1) with initial data
μ0 ∗ M(ε), and let μt be the solution of (1.1) with initial data μ0. Then

μt ∗ M(ε) = f (ε)(·, t).
Because of this identity, it will be easy to prove Theorem 1.1 if we can first prove it for

initial data of the form μ0 ∗ M(ε), for some ε > 0 – even ε = 1 will do, as we shall see.
The Wild summation formula reduces many questions about the continuous time evolu-

tion

t �→ f (·, t) (1.12)

described by (1.5) to questions about the sequence

n �→ Q+
n (f0). (1.13)
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The strategy of rephrasing questions about (1.12) as questions about (1.13) was championed
by McKean, [13, 14] who proved a very useful alternate formula for Q+

n (f0). McKean’s
formula is not recursive, but instead involves a certain random walk on graphs:

Q+
n (f0) =

∑

γ∈Γn

PrΓn(γ )Cγ (f0, . . . , f0), (1.14)

where PrΓn is the probability that a certain random walk on graphs passes through γ , and
Cγ (f0, . . . , f0) is an n-fold Wild convolution of f0 determined by γ . The reason for bringing
in the graphs γ is that the Wild convolution is non–associative, so that in general

(f ◦ f ) ◦ (f ◦ f ) 
= ((f ◦ f ) ◦ f ) ◦ f.

McKean’s graphs index the different ways of associating the pairs in an n-fold Wild convo-
lution. See [14], and also [4, 5], which further develop McKean’s approach, for additional
explanation, and pictures of the graphs. The n-fold Wild convolutions Cγ (f, . . . , f ) are lin-
ear in each of the arguments. We shall make use of this later on, which is why we have
written out all of the factors in the argument of Cγ .

The sum in (1.14) provides a basis for separating Q+
n (f ) into two pieces: one “good”

and one “bad”, in which the good part has some nice property, such as being smooth, or
being close to a Maxwellian, and the bad one has a small total mass. This was the strategy
employed in [5]. Our main result here is of this type, but we must use a further stochastic
decomposition of Q+

n (f ) that we introduce in the next section. Using this stochastic decom-
position, we prove:

Theorem 1.2 Let μ0 be a probability measure on R
3 such that

∫
R3 |v|2dμ(v) = ∞. Let ηL

be defined by (1.9). For any fixed ε > 0, let f0(v) = μ0 ∗M(ε). Then there is an n0 depending
only on ε such that for all n ≥ n0, there is a decomposition of Q+

n (f0) of the form

Q+
n (f0) = qnGn(f0) + (1 − qn)Bn(f0) (1.15)

where Gn(f0) and Bn(f0) are probability densities, and moreover, for universal, finite con-
stants C1 and C2, it is the case that for any b with 0 < b < 1/3 and with Ln defined by
Ln = nκ(1−3b)/5,

‖Gn(f0)‖∞ ≤ C1

η
3/2
Ln

and qn ≤ C2

nκb
.

Once we have proved Theorem 1.2, Theorem 1.1 will easily follow, as we show in Sect. 7,
where both theorems are proved. The next few sections establish lemmas and notation used
in the proofs, and explain our strategy.

We conclude this section with a useful remark pointed out by a referee: The condi-
tion

∫
R3 |v|2dμ(v) = ∞ is consistent with

∫
R3 |v|sdμ(v) < ∞ for s < 2. If furthermore

1 < s < 2, then the momentum is well defined and finite, and is conserved by the solution,
since

∫
R3 |v|sdμt(v) < ∞ will at worst grow exponentially with t .

2 The Fourier Transform of Cγ (f, . . . ,f )

Computing the Wild convolution of the densities f and g means computing the integral on
the right hand side in (1.3). This involves both an integral over the velocity w, and an inte-
gral over the unit vector σ . In an n-fold Wild convolution Cγ (f1, . . . , fn), there will be an
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integration over n − 1 velocities, and an integration over n − 1 unit vectors, σ1, . . . , σn−1. In
what follows, we need to separate these two integrals, doing first all of the velocity integra-
tions with all of the unit vectors held fixed. The simplest way to do this is to use the Fourier
transform.

There is an explicit formula, due to Bobylev [1], for the Fourier transform of the Wild
convolution of two probability densities f and g:

ĝ ◦ h(ξ) =
∫

S2
ĝ(ξ+)̂h(ξ−)B(σ · ξ/|ξ |)dσ (2.1)

where

ξ+ = ξ + |ξ |σ
2

and ξ− = ξ − |ξ |σ
2

.

One easily sees that with θ denoting the angle between ξ and σ ,

|ξ+|2 = |ξ |2 cos2(θ/2) and |ξ−|2 = |ξ |2 sin2(θ/2). (2.2)

We now wish to iterate the application of this formula to generate a formula for the
Fourier transform of Cγ (f ). The only difficulty is notational. To be clear, consider first the
simple McKean graph with three leaves such that the two leftmost leave have depth 2, and
the leaf on the right has depth 1. In this case, Cγ (f,g,h) = (f ◦ g) ◦ h, which is all one
really need to know about the McKean graphs at present. One easily iterates (2.1) and finds
Ĉγ (f, g,h) is obtained by integrating

f̂

(
ξ + |ξ |σ2

4
+ |ξ + |ξ |σ2|

4
σ1

)

ĝ

(
ξ + |ξ |σ2

4
− |ξ + |ξ |σ2|

4
σ1

)

ĥ

(
ξ − |ξ |σ2

4

)

over S2 × S2 with respect to the probability measure

B(σ1 · ξ/|ξ |)B(σ2 · ξ/|ξ |)dσ1dσ2.

We introduce the following notation for the arguments of f̂ , ĝ and ĥ: With γ denoting
the McKean graph at hand, define

P1(ξ, γ, σ1, σ2) = ξ + |ξ |σ2

4
+ |ξ + |ξ |σ2|

4
σ1,

P2(ξ, γ, σ1, σ2) = ξ + |ξ |σ2

4
− |ξ + |ξ |σ2|

4
σ1, (2.3)

P3(ξ, γ, σ1, σ2) = ξ − |ξ |σ2

4
.

More generally, if γ is any McKean graph with n leaves, it represents a convolution of
n probability densities, with the structure of the graph encoding the order in which the it-
erated convolutions are done. With n factors, there will be n − 1 unit vectors σ1, . . . , σn−1

to integrate over. We need a notation for the argument of the th factor, and so we de-
fine P(ξ, γ, σ1, . . . , σn−1) to be the argument of the function corresponding to the th
leaf, 1 ≤  ≤ n. In any particular case, an explicit formula, such as is given in (2.3) can
be worked out.
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Returning to (2.3), we compute the magnitudes of the Pj (ξ, γ, σ1, σ2). By using (2.2),
we see that for our three leaved McKean graph,

|P1(ξ, γ, σ1, σ2)|2 = cos2(θ1/2) cos2(θ2/2)|ξ |2.
Indeed, one easily sees from (2.2) that in general, for any γ , any , and any choice of the unit
vectors, |P(ξ, γ, σ1, . . . , σn)| will be a multiple of |ξ |. Define the numbers π(γ,σ1, . . . , σn)

by

|P(ξ, γ, σ1, . . . , σn)|2 = π2
 (γ.σ1, . . . , σn)|ξ |2.

Each π2
 (γ, σ1, . . . , σn) will be a product of up to n − 1 factors, each of the form sin2(θj /2)

or cos2(θj /2). Indeed, for our three leaved example

π2
1 (γ, σ1, σ2) = cos2(θ1/2) cos2(θ2/2),

π2
2 (γ, σ1, σ2) = sin2(θ1/2) cos2(θ2/2), (2.4)

π2
3 (γ, σ1, σ2) = sin2(θ2/2).

Notice that

π2
1 (γ, σ1, σ2) + π2

2 (γ, σ1, σ2) + π2
3 (γ, σ1, σ2) = 1,

uniformly in σ1 and σ2. It is easy to see that the analogous result holds for any McKean
graph γ :

n∑

=1

π2
 (γ, σ1, . . . , σn−1) = 1. (2.5)

We are almost ready to give a formula for Ĉγ (f1, . . . , fn). We first define the probability
measure dβn on [S2]n−1 given by

dβn =
(

n−1∏

=1

B(σ · ξ/|ξ |)
)

dσ1 · · ·dσn−1. (2.6)

Then with �σ denoting the (n − 1)-tuple (σ1, . . . , σn−1) in [S2]n−1, we have the formula

Ĉγ (f1, . . . , fn)(ξ) =
∫

[S2]n−1

n∏

=1

f̂(P(ξ, γ, �σ))dβn. (2.7)

Note that for each fixed �σ ,
∏n

=1 f̂(P(ξ, γ, �σ)) is the Fourier transform of a probability
density. This is the density one gets if one just integrates over the velocities in forming
the Wild convolutions, and holds the unit vectors �σ fixed. Let us define this density to be
Cγ,�σ (f1, . . . , fn) so that

Ĉγ,�σ (f1, . . . , fn)(ξ) =
n∏

=1

f̂(P(ξ, γ, �σ)). (2.8)

Clearly, Cγ,�σ (f1, . . . , fn) and Cγ (f1, . . . , fn) are related by

Cγ (f1, . . . , fn) =
∫

[S2]n−1
[Cγ,�σ (f1, . . . , fn)]dβn. (2.9)
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In addition to the identity (2.5), the other important thing to know concerning the
π(γ, �σ) is that none of them are too large: For “most” γ and �σ , most of the π(γ, �σ)

are of roughly same size. We will prove estimates that make this precise in Sect. 4. In the
mean time, an optimist might hope that in some sense, for at least most �σ ∈ [S2]n−1 and
most γ ∈ Γn, and most ,

|π(γ,σ )| ≈ 1

n1/2
. (2.10)

To the extent that this is true, we would have

Ĉγ (f )(ξ) ≈ (f̂ (ξ/n1/2))n.

Then, in case f were a mean zero probability density of finite variance σ , a classical argu-
ment would give

lim
n→∞(f̂ (ξ/n1/2))n = e−2π2σ 2|ξ |2 .

This, together with (1.14), would suggest that, to the extent that (2.10) is true for most γ

(with respect to PrΓn ), and all sufficiently large n,

Q+
n (f )(v) ≈

(
1

2πσ 2

)3/2

e−|v|2/2σ 2
. (2.11)

Such results, suggested by McKean [13, 14], have been proved in the case of finite vari-
ance, which in physical terms means finite energy; see [4, 5, 9] and [12]. Here we take up the
case of infinite energy. In the case that σ is infinite, (2.11) suggests that one should expect

lim
n→∞Q+

n (f ) = 0,

“nearly uniformly”. In the next sections, we shall produce a precise rendering of this intuitive
picture, and thus prove Theorem 1.2.

3 The Stochastic Decomposition

Consider a probability density f on R
3 such that

∫
R3 |v|2f (v)dv = ∞. For each L > 0,

define

pL =
∫

|v|≤L

f (v)dv. (3.1)

We shall be interested in large values of L for which pL is close to 1. In any case, for all
L large enough that pL > 0, we can define

g(L)(v) = 1

pL

1|v|≤Lf (v), (3.2)

ηL =
∫

|v|≤L

|v|2f (v)dv, (3.3)

and

σ 2
L = inf

w∈R3

∫

R3
|v − w|2g(L)(v)dv. (3.4)
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Our first Lemma assures us that for large L, σ 2
L is not too much smaller than ηL.

Lemma 3.1 For all ε > 0, there is an L1 < ∞ such that for all L > L1,

σ 2
L ≥ 1 − ε

2
ηL. (3.5)

Proof First, for any c < 1, choose L0 so that pL0 ≥ c. Then for any b with 0 < b < 1, choose
L1 so that

b2ηL1 > 4L2
0, (3.6)

which is of course possible since ηL diverges to infinity as L increases.
The infimum in (3.4) is achieved at w = μL where

μL =
∫

R3
vg(L)(v)dv. (3.7)

For any L ≥ L1, we consider two cases.
First, suppose that |μL| ≥ (ηL/2)1/2. Then,

σ 2
L =

∫

R3
|μL − v|2gL(v)dv

≥
∫

|v|≤L0

|μL − v|2gL(v)dv

≥ ||μL| − L0|2 pL0

pL

≥ c|μL| (|μL| − 2L0)

≥ c(ηL/2)1/2((ηL/2)1/2 − b(ηL)1/2). (3.8)

For c sufficiently close to 1 and b sufficiently close to zero, the right hand side ex-

ceeds
1 − ε

2
ηL.

It remains to consider the case |μL| < (ηL/2)1/2. But then the identity

σ 2
L =

∫

R3
(v2 − μ2

L)f(L)(v)dv = 1

pL

ηL − μ2
L,

yields σ 2
L ≥ (1/pL − 1/2)ηL > ηL/2. �

Next, with μL given by (3.7), define

f(L)(v) = 1

pL

1{|v+μL|≤L}f (v + μL), (3.9)

f (L)(v) = 1

1 − pL

1{|v+μL|≥L}f (v + μL). (3.10)

With these definitions, Lemma 3.1, applied with ε = 1/2, assures us that
∫

R3
vf(L)(v)dv = 0 and

∫

R3
|v|2f(L)(v)dv ≥ 1

4
ηL.
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Let {αj }j∈N be an independent identically distributed sequence of Bernoulli random vari-
ables with success probability

Pr(αj = 1) = pL.

Then, for each L, j and v,

EBer[αjf(L)(v) + (1 − αj )f
(L)(v)] = f (v + μL),

where EBer denotes the expectation with respect to the law of our Bernoulli variables.
Now since the L∞ and L1 bounds to be proved in Theorem 1.2 are translation invariant,

and since the variance is invariant under translation, we may assume, without loss of gen-
erality, that μL = 0. This will simplify the following computations, and we henceforth work
under this assumption.

By the independence of the Bernoulli variables, for any γ ∈ Γn,

Cγ (f, . . . , f ) = EBer[Cγ (α1f(L) + (1 − α1)f
(L), . . . , αnf(L) + (1 − αn)f

(L))]. (3.11)

We are finally in a position to introduce our stochastic decomposition, for which we first
introduce an appropriate probability space. Let (ΩBer,PrBer) denote the probability space of
our Bernoulli process. For each n, define

Ωn = ΩBer × Γn × [S2]n−1,

and on Ωn define the probability measure

Prn = PrBer ⊗ PrΓn ⊗ dβn.

Let En denote the expectation with respect to Prn.
Because of the way that Prn incorporates PrΓn ,

Q+
n (f ) = En[Cγ (f, . . . , f )].

Because of the way that Prn incorporates dβn, we have from (2.9) that

Q+
n (f ) = En[Cγ,�σ (f, . . . , f )].

Finally, because of the way that Prn incorporates PrBer, we have from (3.11)

Q+
n (f ) = En[Cγ,�σ (α1f(L) + (1 − α1)f

(L), . . . , αnf(L) + (1 − αn)f
(L))]. (3.12)

Now, for any event Λ ⊂ Ωn, define Q+
n (f,Λ) by conditioning on Λ:

Q+
n (f,Λ) = En[(Cγ,�σ (α1f(L) + (1 − α1)f

(L), . . . , αnf(L) + (1 − αn)f
(L)))|Λ]. (3.13)

Evidently,

Q+
n (f ) = Prn(Λ)Q+

n (f,Λ) + Prn(Λ
c)Q+

n (f,Λc). (3.14)

Compare this with the decomposition of Q+
n (f ) in (1.15). To prove Theorem 1.2, it suffices

to show that for all sufficiently large n, we can choose an event Λ ⊂ Ωn so that

Prn(Λ
c) and ‖Q+

n (f,Λ)‖∞
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are both very small.
To show that ‖Q+

n (f,Λ)‖∞ is very small, we show that Q̂+
n (f,Λ) is integrable, and that

in fact, ‖Q̂+
n (f,Λ)‖1 is very small. Then the Fourier inversion theorem implies that

‖Q+
n (f,Λ)‖∞ ≤ ‖Q̂+

n (f,Λ)‖1.

Now, by (3.13) and linearity,

Q̂+
n (f,Λ) = En[(Ĉγ,�σ (α1f(L) + (1 − α1)f

(L), . . . , αnf(L) + (1 − αn)f
(L))|Λ]. (3.15)

Next, notice that the Fourier transform of [αjf(L)(v) + (1 − αj )f
(L)(v)] is simply given

by

f̂(L)(αj ξ)f̂ (L)((1 − αj )ξ),

since if αj = 1, the second factor is 1, while if αj = 0, the first factor is 1. Therefore,
from (2.8),

Ĉγ,�σ (α1f(L) + (1 − α1)f
(L), . . . , αnf(L) + (1 − αn)f

(L)))

=
n∏

=1

f̂(L)(αP(ξ, γ, �σ))f̂ (L)((1 − α)P(ξ, γ, �σ)).

Going back to (3.15), we have

Q̂+
n (f,Λ)(ξ) = En

[
n∏

=1

f̂(L)(αP(ξ, γ, �σ))f̂ (L)((1 − α)P(ξ, γ, �σ))|Λ
]

(3.16)

Now let ML be the centered Maxwellian with variance σL:

ML(v) =
(

1

2πσ 2
L

)3/2

e−|v|2/2σ 2
L . (3.17)

Define

Ŝn(f,Λ)(ξ) = En

[
n∏

=1

M̂L(αP(ξ, γ, �σ))f̂ (L)((1 − α)P(ξ, γ, �σ))|Λ
]

. (3.18)

In passing from (3.16) to (3.18), we have simply substituted each factor of f̂(L) in (3.16)
with M̂L evaluated at the same argument.

Next, introduce the random functions

Hn(ξ) =
∣
∣
∣
∣
∣

n∏

=1

f̂(L)(αP (ξ, γ, �σ)) −
n∏

=1

M̂L(αP (ξ, γ, �σ))

∣
∣
∣
∣
∣

(3.19)

and

Jn(ξ) =
∣
∣
∣
∣
∣

n∏

=1

M̂L(αP (ξ), γ, �σ)

∣
∣
∣
∣
∣
. (3.20)

• To facilitate reading of the expressions that follow, we shall suppress the explicit reference
to dependence on γ and �σ .
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Using the trivial bound ‖f̂ (L)‖∞ = 1, one sees that

|Q̂+
n (f,Λ)(ξ) − Ŝn(f,Λ)(ξ)| ≤ En[Hn(ξ)|Λ] (3.21)

and

|Ŝn(f,Λ)(ξ)| ≤ En[Jn(ξ)|Λ]. (3.22)

It follows that

|Q̂+
n (f,Λ)(ξ)| ≤ En[Hn(ξ) + Jn(ξ)|Λ]. (3.23)

We shall show that En[Hn(ξ)|Λ] is small because the substitution of f̂(L) by M̂L in pass-
ing from (3.16) to (3.18) has only a small effect, for the same reason that the corresponding
replacement in the proof of the Central Limit Theorem has only a small effect.

Moreover,

M̂L(ξ) = e−2π2σ 2
L
|ξ |2 ,

which decays very rapidly. As long as there are plenty of such factors in the random product
Jn, one can expect Jn to have a very small L1 norm.

In the next section, we prove the probabilistic estimate that will yield us an appropriate
choice of Λ for each n.

4 Probabilistic Lemmas

We begin with a lemma which assures us that, with high probability, none of the individual
terms in the sum

n∑

=1

π2
 = 1

makes a very large contribution.

Lemma 4.1 There is a constant C < ∞ such that for all n,

En

[
n∑

=1

(π(γ, �σ))
4

]

≤ C

nκ
, (4.1)

where

κ = 1 −
∫

S2
[cos4(θ/2) + sin4(θ/2)]B(cos(θ))dσ. (4.2)

Remark As was shown in [6], the constant κ is the absolute value of the spectral gap for the
linearized collision operator.

Proof For any McKean graph γ with n leaves, define the random variable W by
W = ∑n

=1 (π(γ, �σ))
4, where each π(γ, �σ) is a product of sines and cosines, as in (2.4).
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Define T (n) = En(W). We shall show, using an argument from [4] that T (n) solves the
recurrence relation

T (n) = 1

n − 1

⎛

⎝1 − κ

2

n−1∑

j=1

T (j)T (n − j)

⎞

⎠ , (4.3)

where T (1) = 1.
To prove (4.3), we take any McKean graph γ , and “split” it into two graphs, γleft and

γright by removing the root node. (This is the exact same procedure that was used in [4] to
estimate a very similar quantity, and [4] may be consulted for further details and pictures.) If
γ is selected according to PrΓn , then as shown in [4], the number of leaves in γleft (and hence
in γright) is uniformly distributed in {1, . . . , n − 1}. Also, all of the terms π contributing to
W(γleft) and W(γright) are the same as the corresponding terms contributing to W(γ ), except
that they lack a factor of cos2(θ1/2) on the left, and sin2(θ1/2) on the right. Therefore,

W(γ ) = (cos(θ1/2))4W(γleft) + (sin(θ1/2))4W(γright).

Now, taking the expectation, symmetrizing, and using the uniform distribution of the number
of leaves on the left (and hence right), we obtain (4.3).

The solution of this recurrence relation was estimated in [4], but in the meantime, an
exact solution has been found in [11]. The result is

T (n) = Γ (n − κ)

Γ (1 − κ)Γ (n)

where Γ (·) denotes the usual gamma function.
It follows that for all n sufficiently large,

T (n) ≤ 2

Γ (1 − κ)

1

nκ
,

from which the result easily follows. �

We next make some definitions that will be crucial in what follows. For any a > 0, define
the random subset Ga of {1, . . . , n} by

Ga = { : π ≤ a/nκ/2}. (4.4)

Then, for any A > 0 and any a > 0, define the event

ΛA,a ⊂ Ωn

by

ΛA,a =
{

∑

∈Ga

απ
2
 ≥ pL

2
− A

a2

}

∩
{

n∑

=1

π4
 ≤ A

nκ

}

. (4.5)

For an appropriate choice of A and a as powers of n, the event ΛA,a will be the “good”
event on which we can successfully estimate Hn and Jn.
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Lemma 4.2 Let C be the constant in (4.1). Then

Prn(ΛA,a) ≥ 1 − 4C
1 − pL

pL

1

nκ
− C

A
. (4.6)

Proof We first prove that

Prn

{
n∑

=1

απ
2
 ≤ pL/2

}

≤ 4C
1 − pL

pL

1

nκ
. (4.7)

To see this, note that
n∑

=1

απ
2
 − pL =

n∑

=1

(α − pL)π2


and so by Markov’s inequality, the probability that |∑n

=1 απ
2
 − pL| exceeds pL/2 is no

greater than

En

( |∑n

=1(α − pL)π2
 |2

(pL/2)2

)

= En

(
pL(1 − pL)

∑n

=1 π4


(pL/2)2

)

≤ 4C
1 − pL

pL

1

nκ
.

We have used the fact that the (α − pL) are independent, mean zero random variables to
eliminate the cross terms in the expectation.

Next, once more by (4.1) and Markov’s inequality,

Prn

(
n∑

=1

π4
 ≥ A

nκ

)

≤ C

A
. (4.8)

Finally, to get a lower bound on
∑

∈Ga
απ

2
 , we use (4.7) and an upper bound on

∑
∈Ba

απ
2
 , where Ba denotes the complement of Ga in {1, . . . , n}:

∑

∈Ba

απ
2
 ≤

∑

∈Ba

π4


nκ

a2
≤ nκ

a2

n∑

=1

π4
 ,

so that on the event {∑n

=1 π4
 ≤ A/nκ},

∑

∈Ba

απ
2
 ≤ A

a2
. (4.9)

Combining (4.7), (4.8) and (4.9) in the obvious way, we have the result. �

Lemma 4.3 Suppose n, L, A and a are such that

pL

2
− A

a2
− a2

nκ
≥ 1

4
. (4.10)

Then for all outcomes in the event ΛA,a defined in (4.5), there are (at least) two indices, 1

and 2, such that

απ
2
 ≥ 1

4n

for  = 1, 2.
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Proof By the definition of ΛA,a , when (4.10) is true,
∑

∈Ga
απ

2
 ≥ 1/4 for all outcomes in

ΛA,a There are at most n terms in this sum, and so at least one is as large as 1/4n.
Now delete this term from the sum. Since the term came from Ga , the loss is no greater

than a2/nκ . Hence when (4.10) is true, the sum over the remaining terms is still at least 1/4,
and so there is a second term in Ba contributing at least 1/4n. �

5 Inner Estimates

By a telescoping sum argument,

Hn(ξ) ≤
n∑

=1

(
−1∏

j=1

|̂f(L)(αjPj (ξ))|
)

|f̂(L)(αP(ξ)) − M̂L(αP(ξ))|
(

n∏

k=+1

M̂L(αkPk(ξ))

)

.

(5.1)
By convention, products over empty ranges of indices are defined to be 1.

We now seek upper bounds, for each , on

(
−1∏

j=1

|̂f(L)(αjPj (ξ))|
)(

n∏

k=+1

M̂L(αkPk(ξ))

)

(5.2)

and also on

|f̂(L)(αP(ξ)) − M̂L(αP(ξ))|. (5.3)

By a standard Taylor expansion argument,

|f̂(L)(αP(ξ)) − M̂L(αP(ξ))| ≤ KL

(2π)3

6
απ

3
 |ξ |3 (5.4)

and

|f̂(L)(αP(ξ)) − (1 − 2π2σ 2
Lαπ

2
 |ξ |2)| ≤ KL

(2π)3

6
απ

3
 |ξ |3 (5.5)

where

KL =
∫

R3
|v|3(f(L) + ML)dv.

Lemma 5.1 For all |ξ | with |ξ | ≤ σ 2
L

2πaKL
nκ/2, and all outcomes in ΛA,a ,

(
−1∏

j=1

|̂f(L)(αjPj (ξ))|
)(

n∏

k=+1

M̂L(αkPk(ξ))

)

≤ exp

(

−π2σ 2
L

(
pL

2
− A

a2
− a2

nκ

)

|ξ |2
)

.

Proof The bound on |ξ | that is stated in the hypothesis has been chosen so that the right hand
side in (5.4) will be less that one half the size of the quadratic term in the Taylor expansion
for f̂(L), or M̂L, which is the same. Indeed, for j ∈ Ga , so that πj ≤ a/nκ/2,

|ξ | ≤ σ 2
L

2πaKL

nκ/2 ⇒ KL

(2π)3

6
αjπ

3
j |ξ |3 < αjπ

2σ 2
Lπ2

j |ξ |2.
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It follows from this, (5.5), and the elementary estimate 1 − x ≤ e−x , that for j ∈ Ga ,

|ξ | ≤ σ 2
L

2πaKL

nκ/2 ⇒ ∣
∣f̂(L)(αjPj (ξ))

∣
∣ ≤ 1 − π2σ 2

Lαjπ
2
j |ξ |2 ≤ e

−π2σ 2
L
αj π2

j
|ξ |2

.

For j that does not belong to Ga , we still have the trivial bound |f̂(L)(αjPj (ξ))| ≤ 1. Of
course for all , and all ξ , we have

M̂L((αP(ξ)) ≤ e−π2σ 2
L
απ

2

|ξ |2 .

Now, going back to (5.2), we can conclude that

(
−1∏

j=1

|̂f(L)(αjPj (ξ))|
)(

n∏

k=+1

M̂L(αkPk(ξ))

)

≤ exp

(

−π2σ 2
L

(
∑

j∈Ga

αjπ
2
j − a2/nκ

)

|ξ |2
)

.

The point of the subtracted term is that  might belong to Ga . The result now follows from
the definition of ΛA,a �

We now come to the main lemma of this section:

Lemma 5.2 Suppose n, L, A and a are such that (4.10) holds. Then for all outcomes
in ΛA,a ,

∫

|ξ |≤σ 2
L
nκ/2/(2πaKL)

Hn(ξ)dξ ≤ D
KLA1/2

σ 6
Lnκ/2

(5.6)

where

D =
(

KL

(2π)3

6

)∫

R3
|ξ |3 exp(−π2|ξ |2/4)dξ.

Proof Suppose that |ξ | ≤ σ 2
Lnκ/2/(2πaKL). By (5.1), Lemma 5.1, and the hypothesis

that (4.10) holds, we have for all outcomes in ΛA,a ,

Hn(ξ) ≤
(

n∑

=1

|f̂(L)(αP(ξ)) − M̂L(αP(ξ))|
)

exp(−π2σ 2
L|ξ |2/4).

Next, by (5.4),

n∑

=1

|f̂(L)(αP(ξ)) − M̂L(αP(ξ))| ≤ KL

(2π)3

6
|ξ |3

n∑

=1

π3
 .

But by the Schwarz inequality,

n∑

=1

π3
 =

n∑

=1

(π2
 )(π) ≤

(
n∑

=1

π4


)1/2( n∑

=1

π2


)1/2

=
(

n∑

=1

π4


)1/2

.

On ΛA,a ,
∑n

=1 π4
 ≤ A/nκ , and so on the set under consideration,

Hn(ξ) ≤
√

A

nκ/2

(

KL

(2π)3

6

)

|ξ |3 exp(−π2σ 2
L|ξ |2/4).
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Integrating the right hand side over all of R
3 and scaling σL out of the integrand,we have

the claimed result. �

6 The Outer Estimates

In this section we estimate
∫

|ξ |≥σ 2
L
nκ/2/(2πaKL)

Hn(ξ)dξ and ‖Jn‖1.

Lemma 6.1 Suppose that for some ε > 0, f = μ0 ∗ M(ε). Suppose also n, L, A and a are
such that

pL

2
− A

a2
− 2

a2

n
≥ 1

4
. (6.1)

Then for all outcomes in ΛA,a ,

∫

|ξ |≥σ 2
L
nκ/2/(2πaKL)

∣
∣
∣
∣
∣

n∏

=1

f̂(L)(αP(ξ))

∣
∣
∣
∣
∣
dξ ≤ exp

(

−nκ

2

cLσ 4
L

(2πaKL)2

)

16π4

(
L3

3ε

)

(2n)3/2

(6.2)
and

‖Jn‖1 =
∫

R3

∣
∣
∣
∣
∣

n∏

=1

M̂L(αP(ξ))

∣
∣
∣
∣
∣
dξ ≤ 1

π3/2σ 3
L

, (6.3)

where

cL = 1

3

(
ε3/2

48σ 3
L

)

. (6.4)

Note that

∫

|ξ |≥σ 2
L
nκ/2/(2πaKL)

Hn(ξ)dξ ≤
∫

|ξ |≥σ 2
L
nκ/2/(2πaKL)

∣
∣
∣
∣
∣

n∏

=1

f̂(L)(αP(ξ))

∣
∣
∣
∣
∣
dξ

+
∫

R3

∣
∣
∣
∣
∣

n∏

=1

M̂L(αP(ξ))

∣
∣
∣
∣
∣
dξ,

so that the Lemma provides both of the estimates that we seek.

Proof The hypothesis that f = μ0 ∗ M(ε) has two consequences that shall be used here.
There first is that f is then bounded. Indeed, ‖f ‖∞ ≤ (2πε)−3/2. It follows that for all
L under consideration here, ‖f(L)‖∞ ≤ ε−3/2.

The bound on ‖f(L)‖∞ allows us to apply Lemma 9.1 in the Appendix to f(L), and to
conclude that for all η ≤ 1,

|ξ | ≥ η �⇒ |f̂(L)(ξ)| ≤ 1 − cLη2 (6.5)

where cL is given by (6.4).
Notice that

|ξ | ≥ σ 2
Lnκ/2/(2πaKL) ⇒ |P(ξ)| ≥ πσ

2
Lnκ/(2πaKL).
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Also, for  ∈ Ga ,

απσ
2
Lnκ/(2πaKL) ≤ σ 2

L/(2πKL) < 1.

Therefore, in the th factor we use (6.5) with η given by

η = πσ
2
Lnκ/2/(2πaKL).

It follows that for  ∈ Ga and |ξ | ≥ nκ/2/(2πaKL),

|f̂(L)(αP(ξ))| ≤ 1 − nκ(cLσ 4
Lαπ

2
 /(2πaKL)2).

For  /∈ Ga , we have the trivial estimate ‖f̂(L)‖∞ ≤ 1. Consequently,

∣
∣
∣
∣
∣

n∏

=1

f̂(L)(αP(ξ))

∣
∣
∣
∣
∣
≤ exp

(

−nκ

(∑

∈Ga

αjπ
2


)
cLσ 4

L

(2πaKL)2

)

.

�

Since we have a good lower bound on
∑

∈Ga
αjπ

2
 on ΛA,a , this provides an excellent

pointwise bound on Hn(ξ) for |ξ | ≥ nκ/2σ 2
L/(2πaKL). However, this region has an infinite

volume, and we must bring in something else to estimate the integral in question.
At this point we make our second use of the hypothesis that f = μ0 ∗ M(ε). This entails

that

f̂ (ξ) ≤ Gε(ξ) where Gε(ξ) = e−ε|ξ |2 .

Let hL denote the function

hL = 1

pL

1{|v|≤L}.

By the definition of f(L),

|f̂(L)(ξ)| = |(f̂ ∗ ĥL)(ξ)| ≤ (Gε ∗ |ĥL|)(ξ). (6.6)

where ∗ denotes convolution.
Since both Gε and ĥL are radial functions, so is Gε ∗ |ĥL|. Moreover,

‖Gε ∗ |ĥL|‖2 ≤ ‖Gε‖1‖ĥL‖2 = 2

(
π

ε

)3/2 (
4πL3

3

)1/2

= 4π2

(
L3

3ε

)1/2

(6.7)

We know from Lemma 4.3 that when n, A and a are such that (4.10) holds, there are at
least two indices 1 and 2 in Ga such that απ

2
 ≥ 1/(4n) for  = 1, 2. Therefore,

|f̂(L)(α1P1(ξ))||f̂(L)(α2P2(ξ))| ≤ (Gε ∗ |ĥL|)2(|ξ |/(2√
n)).

It follows from (6.7) that

∫

R3
(Gε ∗ |ĥL|)2(|ξ |/(2√

n))dξ ≤ 16π4

(
L3

3ε

)

(4n)3/2. (6.8)
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Now let G∗
a denote Ga with the indices 1 and 2 removed. By Lemma 5.1, we have that

on ΛA,a , for all n, A and a such that (6.1) holds,

∣
∣
∣
∣
∣

n∏

=1

f̂(L)(αP(ξ))

∣
∣
∣
∣
∣
≤ exp

(

−nκ

(
∑

∈G∗
a

αjπ
2


)
cLσ 4

L

(2πaKL)2

)

(Gε ∗ |ĥL|)2(|ξ |/(2√
n))

≤ exp

(

−nκ

(
pL

2
− A

a2
− 2

a2

n

)
cLσ 4

L

(2πaKL)2

)

(Gε ∗ |ĥL|)2(|ξ |/(2√
n))

≤ exp

(

−nκ

2

cLσ 4
L

(2πaKL)2

)

(Gε ∗ |ĥL|)2(|ξ |/(2√
n)).

It now follows from (6.8) that

∫

|ξ |≥nκ/2σ 2
L
/(2πaKL)

∣
∣
∣
∣
∣

n∏

=1

f̂(L)(αP(ξ, γ, �σ))

∣
∣
∣
∣
∣
dξ

≤ exp

(

−nκ

2

cLσ 4
L

(2πaKL)2

)

16π4

(
L3

3ε

)

(2n)3/2.

It is much easier to estimate the integral in (6.3) since M̂L is radial and rapidly decaying.
In fact,

|M̂L(αP(ξ)| = e−2π2σ 2
L
απ

2

|ξ |2 .

Therefore, for all ξ ,

n∏

=1

M̂L(αP(ξ, γ, �σ)) ≤ exp

(

−2π2

(
∑

∈Ga

αjπ
2


))

.

It follows that for all outcomes in ΛA,a , and all n, A and a such that (6.1) holds,

n∏

=1

M̂L(αP(ξ, γ, �σ)) ≤ e−π2σ 2
L
|ξ |2 .

7 Proofs of the Theorems

Proof of Theorem 1.2 We shall now obtain the decomposition (1.15) from (3.14) with

Gn(f0) = Q+
n (f0,Λn), Bn(f0) = Q+

n (f0,Λ
c
n), qn = Prn(Λ

c
n).

By Lemma 5.2, Lemma 6.1, and the remark following Lemma 6.1, for all n, L, A and a such
that (6.1) holds,

‖E[Hn|ΛA,a]‖1 ≤ D
√

A

σ 6
Lnκ/2

+ exp

(

−nκ

2

cLσ 4
L

(2πaKL)2

)

16π4

(
L3

3ε

)

+ 1

π3/2σ 3
L

(7.1)
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and

‖E[Jn|ΛA,a]‖1 ≤ 1

π3/2σ 3
L

. (7.2)

We now choose L, A and a to grow like powers of n so that the right hand side of (7.1)
tends to zero as n increases. To make such a choice, we first focus on the second term on the
right, involving the exponential. We will make our choices of Ln, An and an so that

nκ

2

cLnσ
4
Ln

(2πanKLn)
2

≥ Const·nb (7.3)

for some b > 0. Then the middle term tends to zero faster than any power of n, and we
need only concern ourselves with the remaining two terms. The last one will turn out to be
dominant.

To see how to achieve (7.3), note that

KL ≤ 2Lσ 2
L and σL ≤ L,

and also that cL is proportional to σ−3
L Thus,

cLσ 4
L

K2
L

≥ Const·L−2η−3
L ≥ Const·L−5.

Given specific information on the divergence of ηL, we could make use of the middle
bound, and reduce the factor of 5 in the definition of Ln in (7.4) below. However, for the
sake of simplicity and generality, we use the bound on the right. Therefore we shall choose
Ln and an so that nκ/(a2

nL
5
n) is a positive power of n. We also need An/a

2
n and an/n to tend

to zero so that (6.1) will be satisfied for all sufficiently large n. We can achieve all of this by
choosing, for any b with 0 < b < 1/3,

L = Ln := nκ(1−3b)/5, A = An := nκb and a = an := nκb. (7.4)

We do this for all n sufficiently large that nκ(1−3b)/5 ≥ L1 as given in Lemma 3.1 For smaller
values of n, we simply set Ln = L1.

With these choices, for all large n, (7.3) holds, and (6.1) becomes

pLn

2
− 1

nκb
− 2

1

n1−2κb
≥ 1

4
. (7.5)

Since limn→∞ pLn = 1, it is clear that (6.1) will be satisfied for all sufficiently large n.
It follows that

lim
n→∞ exp

(

−nκ

2

cLnσ
4
Ln

(2πanKLn)
2

)

16π4

(
L3

n

3ε

)

= 0,

and that the convergence takes place faster than any power of n.
The dominant term in (7.1) then is the last one, and so there is an n0 so that for all n ≥ n0,

‖E[Hn|ΛAn,an ]‖1 ≤ 2

π3/2σ 3
L

(7.6)
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We now define

Λn = ΛAn,an .

Then, by Lemma 4.2,

Prn(Λ
c
n) ≤ Const· 1

nκb
,

which gives us the desired bound on qn. Moreover, from (3.23) and the estimates just above,

‖Q̂+
n (f,Λn)‖1 ≤ 3

π3/2σ 3
L

(7.7)

for all n ≥ n0. By the Fourier inversion theorem, this entails,

‖Q+
n (f,Λn)‖∞ ≤ 3

π3/2σ 3
Ln

(7.8)

for all n ≥ n0. By Lemma 3.1, this gives us the desired bound on ‖Gn(f0)‖∞. This completes
the proof of Theorem 1.2. �

Proof of Theorem 1.1 We apply Theorem 1.2 with ε = 1. We first consider f (v, t) = M ∗μt .
Let BR denote the centered ball of radius R. We have that

∫

BR

Q+
n (v)dv ≤ C1

R3

η
3/2
Ln

+ C2
1

nκb

where b is any number with 0 < b < 1/3, and Ln = nκ(1−3b)/5. (We have absorbed a factor
of 4π/3 into the constant C1 of Theorem 1.2 for convenience.)

Therefore,

∫

BR

f (v, t)dv ≤ C1

[

e−t

∞∑

n=1

(1 − e−t )n−1 R3

η
3/2
Ln

]

+ C2

[

e−t

∞∑

n=1

(1 − e−t )n−1 1

nκb

]

.

The last term on the right is easy to estimate since for any c > 0,

e−t

∞∑

n=1

n−c(1 − e−t )n−1 ≤ Const·e−ct .

Applying this with c = κb, we get a bound by a multiple of e−κbt .
If it is the case that ηL diverges like some power of L, necessarily less than quadratically,

we can apply the same type of estimate, and can then optimize the choice of b. For instance
if ηL ≥ Const·Ls , we would get a bound by a multiple of e−[3κ(1−3b)s/10]t . Then choosing
b = 3s/(10 + 9s), so that both exponents are the same, we would have decay bounded
by e−[3κs/(10+9s)]t .

In general, we cannot be quite as explicit. But in any case, by the monotonicity of ηLn ,
for any positive integer N ,

e−t

∞∑

n=1

(1 − e−t )n−1 R3

η
3/2
Ln

≤ Ne−t R3

η
3/2
L1

+ R3

η
3/2
LN

,



720 J Stat Phys (2007) 129: 699–723

which we get by breaking the sum at the N th term. Thus,

e−t

∞∑

n=1

(1 − e−t )n−1 R3

η
3/2
Ln

≤ inf
N

(

Ne−t R3

η
3/2
L1

+ R3

η
3/2
LN

)

,

which clearly tends to zero as t increases, but may do so very slowly if ηL diverges slowly
with increasing L.

Thus, in any case, for every R,

lim
t→∞

∫

BR

f (v, t)dv = 0.

To draw a conclusion for μt from this, we note that the convolution of the indicator
function of BR , 1BR

, with M satisfies

1B2R
∗ M ≥ φ(R)1BR

,

where φ(R) increases to 1 very rapidly. Thus,
∫

B2R

f (v, t)dv =
∫

1B2R
∗ Mdμt ≥ φ(R)

∫

BR

μt .

Therefore, we also have that

lim
t→∞

∫

BR

dμt = 0. �

8 Remark on Eternal Solutions

In [2, 3], Bobylev and Cercignani constructed a family of self similar eternal solutions of
the spatially homogeneous Boltzmann equation for Maxwellian molecules. Their solutions
have the form

f (v, t) = e−3atΦa(e
−at v)

for certain numbers a. All of their solutions are infinite energy. As they remark, it is likely
that their Φa is a probability density, as is suggested by our notation (and theirs) though their
arguments only shows that it is a probability measure.

Our aim here is to establish a–priori bounds relating a and the tails of Φa . Fix some a,
and in the rest of this section, let

ηL =
∫

|v|<L

dΦa(v).

Suppose that for some s, we have a bound

ηL ≥ Const·Ls.

Then out main result gives us a bound on

lim
t→∞

∫

|v|<R

e−3atdΦa(e
−at v)
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by a constant multiple of R3e−[3κs/(10+9s)]t . In particular,

lim
t→∞

∫

|v|<ert

e−3atdΦa(e
−at v) = 0

for any r < κs/(10 + 9s). Hence, for all sufficiently large t ,

∫

|v|<e(r−a)t

dΦa(v) ≤ 1

2
.

In particular, a > r , an so, choosing r as large as possible,

a ≥ κs

10 + 9s
.

For small values of a, the bound provides a limit on how long the tails of Φα can be.
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Appendix

This appendix contains a quantitative estimate on the decay of bounded probability densities
of finite variance. It is based on a similar lemma in [7]. As elsewhere in the paper, we use
the following convention for the Fourier transform in R

k :

f̂ (ξ) =
∫

Rk

e−2iπx·ξ f (x) dx.

Lemma 9.1 Let g be a probability density on R
k , such that

∫

Rk

xg(x)dx = μ, and
∫

Rk

|x − μ|2g(x)dx = σ 2.

Finally, suppose that ‖g‖∞ < ∞. Then, given η with 1 ≥ η > 0, there is a constant
α(‖g‖∞, σ ) > 0 depending on g only through ‖g‖∞ and σ , so that

|ξ | ≥ η �⇒ |ĝ(ξ)| ≤ 1 − α(‖g‖∞, σ )η2. (9.1)

In the particular, one has the following explicit value for α(K,σ) in dimension k = 3:

α(‖g‖∞, σ ) = 1

3

(
1

48‖g‖∞σ 3

)

for k = 3. (9.2)

Proof Let ξ be such that |ξ | ≥ η, and let z be such that ĝ(ξ)e−2iπz·ξ = |ĝ(ξ)|. (Though z de-
pends on ξ , which is fixed, we do not indicate this in our notation.) Then, with � standing
for real part,
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|ĝ(ξ)| = �[ĝ(ξ)e−2iπz·ξ ]

= �
(∫

Rk

g(x)e−2iπ(x+z)·ξ dx

)

=
∫

Rk

g(x) cos[2π(x + z) · ξ ]dx

= 1 −
∫

Rk

g(x)(1 − cos[2π(x + z) · ξ ])dx.

Our goal is to establish a positive lower bound on
∫

Rk

g(x)(1 − cos[2π(x + z) · ξ ])dx.

The key point is that (1 − cos[2π(x + z) · ξ ]) is strictly positive except on a set of measure
zero, and that since ‖g‖p < ∞, g cannot be too heavily concentrated on this set.

To proceed, we first localize. By the bound on the second moment and Markov’s in-
equality,

∫
|x−μ|≤R

g(x)dx ≥ (1 − σ 2/R2). Choosing R = √
2σ , we see that half of the mass,

at least, is contained in the ball of radius
√

2σ , centered on μ.
Let τ ∈ (0,1/2), to be chosen later. Define

B := {x : |x − μ| ≤ √
2σ,1 − cos[2π(x + z)ξ ] ≤ τ }.

Then, since the integrand is non-negative,
∫

|x−μ|≤√
2σ

g(x)(1 − cos[2π(x + z)ξ ])dx

≥
∫

{|x−μ|≤√
2σ }\B

g(x)(1 − cos[2π(x + z)ξ ])dx.

≥ τ

∫

{|x−μ|≤√
2σ }\B

g(x)dx. (9.3)

Next, with |B| denoting the Lebesgue measure of B , we have that
∫

B
g(x)dx ≤ ‖g‖∞|B|.

Therefore,
∫

{|x|≤R}\B
g(x)dx ≥ 1/2 − ‖g‖∞|B|. (9.4)

To estimate |B|, note that if x lies in B , then |x − μ| ≤ √
2σ , and there exists n ∈ Z such

that
∣
∣
∣
∣(x + z) · ξ

|ξ | − n

|ξ |
∣
∣
∣
∣ ≤ cos−1(1 − τ)

2π |ξ | .

The points x that satisfy this inequality lie in parallel slabs of thickness cos−1(1−τ)/(π |ξ |),
repeated at intervals of 1/|ξ |. The intersection of any of these slabs with any ball of radius√

2σ has measure at most

ωk−1σ
k−12(k−1)/2 cos−1(1 − τ)

π |ξ | ,
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where ωk−1 denotes the volume of the unit ball in R
k−1 for k ≥ 1, and is 1 for k = 1. Also,

for τ ≤ 1/2,

cos−1(1 − τ) ≤ √
3τ .

Finally, since there are at most 2
√

2σ |ξ | + 3 of the slabs that intersect the ball of radius√
2, and since η ≤ 1, |B| can be estimated as follows, using the hypotheses η ≤ 1 and σ ≥ 1:

|B| ≤ ωk−1σ
k−12(k−1)/2

(
2
√

2σ |ξ | + 3

π |ξ |
)√

3τ ≤ σ kωk−12(k−1)/2

(
2
√

2 + 3

π |η|
)√

3τ . (9.5)

It is easy to see from (9.5) that one can choose τ to be a sufficiently small multiple of η2,
depending only on σ and K so that

∫

B

g(x)dx ≤ 1/4.

Then from (9.3) and (9.4), one has the bound claimed in the lemma. It is easy to compute
an explicit form for α(‖g‖∞, σ ) from (9.5). The result for k = 3 given in (9.2) is obtained
this way, where we have estimate 2

√
2 + 3 ≤ 6 to simplify the appearance of the bound. �
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